3D Gabor Based Hyperspectral Anomaly Detection

author

  • Maryam Imani Department of Electrical Engineering (Communication), Tarbiat Modares University
Abstract:

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the worthful spatial characteristics. Moreover, some works that include the spatial features in the anomaly detection process, extract features from each hyperspectral band that is a two dimensional image while the original structure of hyperspectral cube contains three dimensions. Ignoring the nature of hyperspectral image leads to lose the contained spectral-spatial correlations in the hyperspectral cube. To deal with this difficulty in this work, the fused spectral and spatial features obtained by applying 3D Gabor filters are proposed for hyperspectral anomaly detection. Exploiting the 3D structure of hyperspectral cube by capturing multiple scales, orientations and spectral dependent characteristics of it provides an appropriate spectral-spatial feature space for anomalous targets detection. The extracted features are applied to the regularized RX detector to provide the detection map. The experiments show the superior performance of the proposed Gabor 3D based detector in terms of detection accuracy and computation time.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Kernel-Based Anomaly Detection in Hyperspectral Imagery

In this paper we present a nonlinear version of the wellknown anomaly detection method referred to as the RXalgorithm. Extending this algorithm to a feature space associated with the original input space via a certain nonlinear mapping function can provide a nonlinear version of the RX-algorithm. This nonlinear RX-algorithm, referred to as the kernel RX-algorithm, is basically intractable mainl...

full text

Anomaly detection and compensation for hyperspectral imagery

Hyperspectral sensors observe hundreds or thousands of narrow contiguous spectral bands. The use of hyperspectral imagery for remote sensing applications is new and promising, yet the characterization and analysis of such data by exploiting both spectral and spatial information have not been extensively investigated thus far. A generic methodology is presented for detecting and compensating ano...

full text

Adaptive Target-scale-invariant Hyperspectral Anomaly Detection

Ground to ground, sensor to object viewing perspective presents a major challenge for autonomous window based object detection, since object scales at this viewing perspective cannot be approximated. In this paper, we present a fully autonomous parallel approach to address this challenge. Using hyperspectral (HS) imagery as input, the approach features a random sampling stage, which does not re...

full text

Anomaly Detection Algorithms for Hyperspectral Imagery

Nowadays the use of hyperspectral imagery specifically automatic target detection algorithms for these images is a relatively exciting area of research. An important challenge of hyperspectral target detection is to detect small targets without any prior knowledge, particularly when the interested targets are insignificant with low probabilities of occurrence. The specific characteristic of ano...

full text

Anomaly Detection from Hyperspectral Remote Sensing Imagery

Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) da...

full text

Hyperspectral imagery: Clutter adaptation in anomaly detection

Hyperspectral sensors are passive sensors that simultaneously record images for hundreds of contiguous and narrowly spaced regions of the electromagnetic spectrum. Each image corresponds to the same ground scene, thus creating a cube of images that contain both spatial and spectral information about the objects and backgrounds in the scene. In this paper, we present an adaptive anomaly detector...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 50  issue 2

pages  101- 110

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023